
I.	Adjacency	Lists	/	Matrices	

A)	Write	code	to	find	whether	or	not	that	element	in	a	matrix	where	the	elements	in	each	
row	and	column	are	in	a	non-decreasing	order	

Example:	

								{		2,	14,	26,	37,	43,	51,	}	

								{		4,	16,	28,	38,	44,	54,	}	

								{		6,	18,	30,	39,	45,	57,	}	

								{		8,	20,	32,	40,	46,	60,	}	

								{	10,	22,	34,	41,	47,	63,	}	

								{	12,	24,	36,	42,	48,	66,	}			

	

		public	static	boolean	contains(int	val,	int[][]	a)	{	
	 		int	len	=	a.length;	
	 		int	row	=	0;	
	 		for	(int	i	=	0;	i	<	len;	i++)	{	
	 	 		if	(val	==	a[0][i])	{	
	 	 	 		row	=	i;	
	 	 	 		return	true;		
	 	 		}	
	 	 		if	(val	>	a[0][i])	
	 	 	 		row	=	i;	
	 		}	
	 		boolean	found	=	false;	
	 		for	(int	j	=	0;	j	<	len;	j++)	{	
	 	 		if	(val	==	a[j][row])	{	
	 	 	 		return	true;	
	 	 		}	
	 		}	
	 		return	found;	
		}	
	

	

	

	

B)	Spiral	Matrix:	Write	code	that	traverses	and	prints	out	a	matrix	in	a	spiral	form	

	

	

See	explanation	here:	https://www.geeksforgeeks.org/print-a-given-matrix-in-spiral-form/	

	

	

	

	

II.	Trie	

A)	Advantages	of	a	Trie	

- Can insert and find strings in O(L) time where L represent the length of a single word.
-	Print	words	in	alphabetical	order
-	Account	for	probable	use	of	space	

See	more:	https://www.geeksforgeeks.org/advantages-trie-data-structure/	

	

B)	Dis-advantages	of	a	Trie	

A	lot	of	extra	memory	is	required	to	faithfully	implement	a	trie	and	can	have	slower	retrieval	
depending	where	all	the	memory	is	stored.	

See	more:	https://stackoverflow.com/questions/32835635/disadvantages-of-tries	

	

C)	Use	cases	for	a	Trie	

1.	Auto	complete	–	see	what	words	come	after	the	few	letters	that	have	already	been	typed	

2.	See	some	examples	here:	https://stackoverflow.com/questions/29933907/what-are-some-other-
possible-use-cases-of-a-trie-data-structure-other-than-t9-sp	

D)	Given	a	trie,	and	knowing	that	each	word	is	denoted	by	an	“isLeaf()	==	true,”	count	the	
total	number	words	present	in	a	trie	denoted	by	an	alphabet	of	size	26,	the	children	of	each	
node	are	represented	by	a	simple	array.	

										final	static	alphabetLength = 26;	

 static	class	TrieNode	
 {	
 TrieNode[] children = new	TrieNode[alphabetLength];	
 boolean	isLeaf;	
 		
 TrieNode(){	
 isLeaf = false;	
 for	(int	i = 0; i < alphabetLength; i++)	
 children[i] = null; 	
 }	
 };	
	

See	the	recursive	solution	here:	https://www.geeksforgeeks.org/counting-number-words-trie/	

	

	

	

III.	B-Tree	

A)	List	Properties	of	B-Tree	

1)	All	leaves	are	at	same	level.	

2)	A	B-Tree	is	defined	by	the	term	minimum	degree	‘t’.	The	value	of	t	depends	upon	disk	block	size.	

3)	Every	node	except	root	must	contain	at	least	t-1	keys.	Root	may	contain	minimum	1	key.	

4)	All	nodes	(including	root)	may	contain	at	most	2t	–	1	keys.	

5)	Number	of	children	of	a	node	is	equal	to	the	number	of	keys	in	it	plus	1.	

6)	All	keys	of	a	node	are	sorted	in	increasing	order.	The	child	between	two	keys	k1	and	k2	contains	
all	keys	in	range	from	k1	and	k2.	

7)	B-Tree	grows	and	shrinks	from	root	which	is	unlike	Binary	Search	Tree.	Binary	Search	Trees	
grow	downward	and	also	shrink	from	downward.	

8)	Like	other	balanced	Binary	Search	Trees,	time	complexity	to	search,	insert	and	delete	is	O(Logn)	

	

	

	

	

IV.	Graph	

A)	Given	a	list	of	edges	in	a	graph	or	"Forest,"	write	code	to	find	the	distinct	amount	of	"trees"	or	
separate	nodes	(e.g.	other	metaphors,	islands	in	an	ocean,	trees	in	a	forest,	disconected	
components)	

Input	:		edges[]	=	{0,	1},	{0,	2},	{3,	4}	

Output	:	2	

Explanation	:	There	are	2	trees	

																			0							3	

																		/	\							\	

																	1			2							4	

	

	

See	solution	here:	https://www.geeksforgeeks.org/count-number-trees-forest/	

	

	

	

	

V.	Dijkstra	-	Proofs	

	

A)	Does	this	algorithm	work	for	negatives	-	why	or	why	not?	

See	a	good	explanation	here:	https://stackoverflow.com/questions/13159337/why-doesnt-
dijkstras-algorithm-work-for-negative-weight-edges	

	

B)	Does	the	shortest	path	change	when	weights	of	all	edges	are	multiplied	by	10?	

See	part	2	here:	https://www.geeksforgeeks.org/interesting-shortest-path-questions-set-1/	

	

C)	Given	a	directed	weighted	graph	and	the	shortest	path	from	vertex	‘s’	to	‘t’	=>	D(s,y),	

If	the	weight	of	every	edge	is	increased	by	10	units,	does	the	shortest	path	remain	same	in	
the	modified	graph?	

See	part	23here:	https://www.geeksforgeeks.org/interesting-shortest-path-questions-set-1/	

	

