
CSCI-343	Midterm	Review	

	

I.	Iterators	
Implement	an	iterator	over	a	custom	linkedlist	class	you	made	that	skips	every	other	element.		

public	Iterator<T>	iterator()	{	

								return	new	Iterator<T>()	{	

												Node<T>	currNode	=	head;	

												Node<T>	previous	=	null;	

												public	boolean	hasNext()	{	

								 	 return	(currNode	!=	null	&&	currNode.next	!=	null	&&	currNode.next	!=	null);	

												}	

	

												public	T	next()	{	

	 	 T	data;	

	 	 if(currNode	!=	null)		data	=	currNode.data;	

	 	 if	(hasNext())	currNode	=	currNode.next;	

	 	 if	(hasNext())	currNode	=	currNode.next;	

	 	 return	data;	

	

												}	

								};	

				}	

	

	 	

	

	

	

	

II.	Doubly	Linked	List	(represented	just	by	the	root	node	here.	
2.1	Draw	a	simple	representation	of	a	doubly	linked	list.	

	

2.2	Now	write	code	to	determine	if	that	linked	list	is	circular		

public	boolean	isCircular(Node<T>	list)	{	

	 if	(list	==	null)	return	true;	

	 Node	head	=	list;	

while	(list	!=	null	&&	list	!=	head)	

list	=	list.next;	

	 return	(list	==	head);	

}	

2.4	Draw	a	simple	representation	of	a	doubly	linked	list,	then	the	result	of	deleting	the	tail	

	

	

	

2.5	Write	code	to	delete	tail	of	doubly	(circular)	linked	list.	realign	it	accordingly,	then	return	the	head	

public	Node<T>	deleteTail(Node<T>		list)	{	

	 if	(list	==	null	||	list.next	==	null		||	list.prev	==	null)	return	null;	

	 Node	head	=	list;	

	 Node	beforeTail	=	head.prev.prev;	

beforeTail.next	=	head;	

	 head.prev	=	beforeTail;	

	 return	head;	

}	

	

III.	Arrays	
3.1	Matrices:	write	a	function	that	transposes	a	matrix	in	place,	in	the	shortest	time	possible,	then	circle	
the	numbers	below	that	are	actually	visited.	

	[{1,	2,	3,	4},	

{5,	6,	7,	8},	

{9,	10,	11,	12},	

{13,	14,	15,	16}]	

	

	
3.2		Merge-sort	is	an	algorithm	that	recursively	halves,	sorts,	and	merges	an	array.	

For	example,	with	an	array	[3,	1,	4,	2],	the	first	split	would	yield	[3,	1],	[4,	2],	and	subsequently		

[3],	[1],	[4],	[2].	The	next	step	would	be	to	put	it	put	it	back	together	in	sorted	order.	

Pictorially,	this	looks	like:		

[3,			1,			4,			2]	

[3,	1]						[4,	2]		

[3]		[1]	[4]	[2]	

Draw	the	full	recursive	tree	(this	means	it	has	a	root	at	the	top	and	bottom)	of	this	algorithm	of	the	
array	[38,	27,	43,	3,	9,	82,	10]	

	

	

	

	

	

	

	

	

	

	

								int	n	=	mat.length;	

								for	(int	i	=	0;	i	<	n;	i++)	

												for	(int	j	=	i+1;	j	<	n;	j++)	{	

																int	temp	=	mat[i][j];	

																mat[i][j]	=	mat[j][i];	

																mat[j][i]	=	temp;	

												}	

	

[1,	5,	9,	13]	

[2,	6,	10,	14]	

[3,	7,	11,	15]	

[4,	8,	12,	16]	

3.2	using	your	intuition,	with	the	number	of	comparisons	made,	what	do	you	anticipate	the	run	time	
(big-o	complexity)	of	this	algorithm	to	be	and	why?	(hint:	what	happens	to	n	every	time?)	

O	(n	log	n)	à	See	how	it	halves	every	time?	

	

