CSCI-343 Midterm Review

l. Iterators

Implement an iterator over a custom linkedlist class you made that skips every other element.

public Iterator<T> iterator() {
return new lterator<T>() {
Node<T> currNode = head;
Node<T> previous = null;
public boolean hasNext() {

return (currNode != null && currNode.next != null && currNode.next != null);

public T next() {
T data;
if(currNode != null) data = currNode.data;
if (hasNext()) currNode = currNode.next;
if (hasNext()) currNode = currNode.next;

return data;

Il. Doubly Linked List (represented just by the root node here.

2.1 Draw a simple representation of a doubly linked list.

head—>| null [1 [next|J prev next|e———— | prev next — tail

Doubly Linked List

2.2 Now write code to determine if that linked list is circular
public boolean isCircular(Node<T> list) {

if (list == null) return true;

Node head = list;

while (list != null && list != head)

list = list.next;

return (list == head);

}

2.4 Draw a simple representation of a doubly linked list, then the result of deleting the tail

2.5 Write code to delete tail of doubly (circular) linked list. realign it accordingly, then return the head
public Node<T> deleteTail(Node<T> list) {

if (list == null | | list.next == null || list.prev == null) return null;

Node head = list;

Node beforeTail = head.prev.prev;

beforeTail.next = head;

head.prev = beforeTail;

return head;

[Il. Arrays

3.1 Matrices: write a function that transposes a matrix in place, in the shortest time possible, then circle

the numbers below that are actually visited. int n = mat.length;

[{1, 2, 3, 4},

[1,5,9,13] for (inti=0;i<n;i++)
{5,6,7,8}, [2, 6, 10, 14] for (intj=i+1;j < n; j++) {
{9, 10, 11, 12}, [3,7, 11, 15] int temp = mat[i][j];
{13, 14, 15, 16}] (4, 8,12, 16] mat[i][j] = mat[j][i];

mat[j][i] = temp;

3.2 Merge-sort is an algorithm that recursively halves, sorts, and merges an array.
For example, with an array [3, 1, 4, 2], the first split would yield [3, 1], [4, 2], and subsequently
[31, [1], [4], [2]. The next step would be to put it put it back together in sorted order.
Pictorially, this looks like:
(3, 1, 4, 2]
¥ o\
3,1 [4.2]
N N
(3] [1][4][2]

Draw the full recursive tree (this means it has a root at the top and bottom) of this algorithm of the
array [38, 27, 43, 3, 9, 82, 10]

These numbers indicate 138157 |43|3 |9 |82 10
steps are processed\‘—-\‘—%-?1
38|27 (43| 3 918210
/ 2 12
38 | 27 43 | 3 9 (82 10
3 '/ 7 13 '/ \ & 17
v \
38 27 43 3 9 82 10
4 \ 5 \8 VERRE /15 /
\
27 | 38 3143 9 (82 10
6 10 16 18
327 |38 |43 911082

1 /19

|:|q|1n|77|=zn|4‘-z|97|20

3.2 using your intuition, with the number of comparisons made, what do you anticipate the run time
(big-o complexity) of this algorithm to be and why? (hint: what happens to n every time?)

O (nlogn)—> See how it halves every time?

