
Tyler	Citrin	

CSCI-343	Midterm	Review	

	

I.	Iterators	
Implement	an	iterator	over	a	custom	linkedlist	class	you	made	that	skips	every	other	element.		

public	Iterator<T>	iterator()	{	

								return	new	Iterator<T>()	{	

												Node<T>	currNode	=	head;	

												Node<T>	previous	=	null;	

												public	boolean	hasNext()	{	

								

	

												}	

	

												public	T	next()	{	

	

	

	

	

	

	

	

												}	

								};	

				}	

	

Why	do	we	use	iterators?	

	



	

II.	Doubly	Linked	List	(represented	just	by	the	root	node	here)	
2.1	Draw	a	simple	representation	of	a	doubly	linked	list.	

	

	

	

2.2	Now	write	code	to	determine	if	that	linked	list	is	circular		

public	boolean	isCircular(Node<T>	list)	{	

	

	

	

	

	

	

}	

2.4	Draw	a	simple	representation	of	a	doubly	linked	list,	then	the	result	of	deleting	the	tail	

	

	

	

2.5	Write	code	to	delete	tail	of	doubly	linked	list	and	then	realigns	it	accordingly,	then	return	the	head	

public	Node<T>	deleteTail(Node<T>		list)	{	

	

	

	

	

	

	

}	



	

III.	Arrays	
3.1	Matrices:	write	a	function	that	transposes	a	matrix	in	place,	in	the	shortest	time	possible,	then	circle	
the	numbers	below	that	are	checked.	

	[{1,	2,	3,	4},	

{5,	6,	7,	8},	

{9,	10,	11,	12},	

{13,	14,	15,	16}]	

	

	

	

	

3.2		Merge-sort	is	an	algorithm	that	recursively	halves,	sorts,	and	merges	an	array.	

For	example,	with	an	array	[3,	1,	4,	2],	the	first	split	would	yield	[3,	1],	[4,	2],	and	subsequently		

[3],	[1],	[4],	[2].	The	next	step	would	be	to	put	it	put	it	back	together	in	sorted	order.	

[3,			1,			4,			2]	

[3,	1]						[4,	2]		

[3]		[1]	[4]	[2]	

Draw	the	full	recursive	tree	(this	means	it	has	a	root	at	the	top	and	bottom)	of	[38,	27,	43,	3,	60,	10].	

	

	

	

	

	


