Tyler Citrin

CSCI-343 Midterm Review Part 2

## IV. Heaps

4.1 Draw a simple heap of size 8 nodes



4.2 Draw an <u>INVALID</u> heap of size 8 nodes, breaking the left-fill-first rules



4.3 Given an array that is supposed to represent a heap, write a function to determine whether or not it maintains the heap ordering property

```
bool isHeap(int arr[], int n)
{
   for (int i=0; i<=(n-2)/2; i++)
   {
      // If left child is greater, return false
      if (arr[2*i +1] > arr[i])
          return false;
      // If right child is greater, return false
      if (arr[2*i+2] > arr[i])
            return false;
    }
   return true;
}
```

# **V. Binary Trees**

5.1 Fill in the following properties below of the binary tree



5.2 Given a simple binary tree, draw the mirror reflection of it. (hint: draw one and then the transformation of it)



Mirror Trees

## 5.3 Write a recursive function to accomplish the above.

```
public Node mirror(Node root) {
    if (root == null) return null;
    mirrorHelper(root);
    return root;
```

}

```
public void mirrorHelper(Node root) {
    if (root == null) return;
    Node left = root.left;
    root.left = root.right;
    root.right = left;
    mirrorHelper(root.right);
    mirrorHelper(root.left);
```

```
}
```

# **BIG O Calculations**

What is the runtime of binary search?

O(logn)

What is the runtime of heap-sort?

O(n logn)

What is the runtime of merge sort?

O(n logn)

### Thought: what do all the above have in common that give them the similar run time?

### Other

What is the difference between recursion and iteration? When would use one over the other?

### Tips

Know when to use one data structure over the other Know which algorithms work with which data structure